Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Moiré excitons and moiré magnetism are essential to semiconducting van der Waals magnets. In this work, we perform a comprehensive first-principles study to elucidate the interplay of electronic excitation and magnetism in twisted magnetic CrSBr bilayers. We predict a twist-induced quantum phase transition for interlayer magnetic coupling and estimate the critical twist angle below which moiré magnetism with mixed ferromagnetic and antiferromagnetic domains could emerge. Localized one-dimensional moiré excitons are stable if the interlayer coupling is ferromagnetic and become unstable if the coupling turns to antiferromagnetic. Exciton energy modulation by magnons is estimated and dependence of exciton oscillator strength on the twist angle and interlayer coupling is analyzed. An orthogonally twisted bilayer is revealed to exhibit layer-dependent, anisotropic optical transitions. Electric field is shown to induce net magnetic moments in moiré excitons, endowing them with exceedingly long lifetimes. Our work lays the foundation for using magnetic moiré bilayers in spintronic, optoelectronic, and quantum information applications.more » « lessFree, publicly-accessible full text available January 7, 2026
- 
            Abstract During the second recovery phase of the 13–14 March 2022 storm, intense high‐latitude neutral mass density spikes are detected by satellites at ∼500 km in both hemispheres. These density spikes, accurately modeled by the Global Ionospheric Thermosphere Model (GITM), are identified as high‐latitude neutral mass density anomalies (HDAs). The GITM simulation indicates that these HDAs, which extends over the polar region, are important features in high‐latitude neutral density. Furthermore, GITM reveals that these HDAs are manifestations of transpolar traveling atmospheric disturbances triggered on the dawn side. Moreover, GITM also reveals significant interhemispheric asymmetries (IHAs) in the magnitude, propagation speed, and propagation direction of HDAs, which are linked to the IHAs in the distribution and magnitude of Joule heating deposited as well as the thermospheric background conditions. This study presents a dynamic perspective on the IHA of storm‐time high‐latitude neutral density variations that is particularly helpful to the proper interpretation of satellite observations.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            A new version of the US National Science Foundation National Center forAtmospheric Research (NSF NCAR) thermosphere-ionosphere-electrodynamicsgeneral circulation model (TIEGCM) has been developed and released. Thispaper describes the changes and improvements of the new version 3.0since its last major release (2.0) in 2016. These include: 1) increasingthe model resolution in both the horizontal and vertical dimensions, aswell as the ionospheric dynamo solver; 2) upward extension of the modelupper boundary to enable more accurate simulations of the topsideionosphere and neutral density in the lower exosphere; 3) improvedparameterization for thermal electron heating rate; 4) resolvingtransport of minor species N(2D); 5) treating helium as a major species;6) parameterization for additional physical processes, such as SAPS andelectrojet turbulent heating; 7) including parallel ion drag in theneutral momentum equation; 8) nudging of prognostic fields near thelower boundary from external data; 9) modification to the NO reactionrate and auroral heating rate; 10) outputs of diagnostic analysis termsof the equations; 11) new functionalities enabling model simulations ofcertain recurrent phenomena, such as solar flares and eclipse. Wepresent examples of the model validation during a moderate storm andcompare simulation results by turning on/off new functionalities todemonstrate the related new model capabilities. Furthermore, the modelis upgraded to comply with the new computer software environment at NSFNCAR for easy installation and run setup and with new visualizationtools. Finally, the model limitations and future development plans arediscussed.more » « lessFree, publicly-accessible full text available May 27, 2026
- 
            Abstract High latitude upper atmospheric inter‐hemispheric asymmetry (IHA) tends to be enhanced during geomagnetic storms, which may be due to the complex spatiotemporal changes and magnitude modifications in field aligned currents (FACs) and particle precipitation (PP). However, the relative contribution of FACs and PP to IHA in high‐latitude forcing and energy is not well understood. The IHA during the 2015 St. Patrick’s Day storm has been investigated using the global ionosphere thermosphere model (GITM), driven by FACs from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) and PP from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE). A comprehensive study of the (a) relative contributions of FACs and PP to electric potential and Joule heating and (b) sensitivity of electric potential and Joule heating to the changes in magnitude and distribution of FACs and PP is presented. The results indicate that FACs lead to larger potential and Joule heating changes compared with PP. The spatial variations of potential and Joule heating are also affected by variation in FACs. As for asymmetric magnitude and distribution, it is found that electric potential and Joule heating are more sensitive to changes in the distribution of FACs and PP than the magnitude of FACs and PP. A new spatial asymmetry index (SAI) is introduced, which reveals spatial asymmetric details that are often overlooked by previous studies. This sensitivity study reveals the relative contributions in high‐latitude forcing and emphasizes the importance of obtaining accurate FACs and PP in both hemispheres.more » « less
- 
            Understanding, predicting, and ultimately controlling exciton band structure and exciton dynamics are central to diverse chemical and materials problems. Here, we have developed a first-principles method to determine exciton dispersion and exciton–phonon interaction in semiconducting and insulating solids based on time-dependent density functional theory. The first-principles method is formulated in planewave bases and pseudopotentials and can be used to compute exciton band structures, exciton charge density, ionic forces, the non-adiabatic coupling matrix between excitonic states, and the exciton–phonon coupling matrix. Based on the spinor formulation, the method enables self-consistent noncollinear calculations to capture spin-orbital coupling. Hybrid exchange-correlation functionals are incorporated to deal with long-range electron–hole interactions in solids. A sub-Hilbert space approximation is introduced to reduce the computational cost without loss of accuracy. For validations, we have applied the method to compute the exciton band structure and exciton–phonon coupling strength in transition metal dichalcogenide monolayers; both agree very well with the previous GW-Bethe–Salpeter equation and experimental results. This development paves the way for accurate determinations of exciton dynamics in a wide range of solid-state materials.more » « less
- 
            Abstract Two‐phase flow, a system where Stokes flow and Darcy flow are coupled, is of great importance in the Earth's interior, such as in subduction zones, mid‐ocean ridges, and hotspots. However, it remains challenging to solve the two‐phase equations accurately in the zero‐porosity limit, for example, when melt is fully frozen below solidus temperature. Here we propose a new three‐field formulation of the two‐phase system, with solid velocity (vs), total pressure (Pt), and fluid pressure (Pf) as unknowns, and present a robust finite‐element implementation, which can be used to solve problems in which domains of both zero porosity and non‐zero porosity are present. The reformulated equations include regularization to avoid singularities and exactly recover to the standard single‐phase incompressible Stokes problem at zero porosity. We verify the correctness of our implementation using the method of manufactured solutions and analytic solutions and demonstrate that we can obtain the expected convergence rates in both space and time. Example experiments, such as self‐compaction, falling block, and mid‐ocean ridge spreading show that this formulation can robustly resolve zero‐ and non‐zero‐porosity domains simultaneously, and can be used for a large range of applications in various geodynamic settings.more » « less
- 
            Electrochemical conversion of CO 2 into value-added chemicals continues to draw interest in renewable energy applications. Although many metal catalysts are active in the CO 2 reduction reaction (CO 2 RR), their reactivity and selectivity are nonetheless hindered by the competing hydrogen evolution reaction (HER). The competition of the HER and CO 2 RR stems from the energy scaling relationship between their reaction intermediates. Herein, we predict that bimetallic monolayer electrocatalysts (BMEs) – a monolayer of transition metals on top of extended metal substrates – could produce dual-functional active sites that circumvent the scaling relationship between the adsorption energies of HER and CO 2 RR intermediates. The antibonding interaction between the adsorbed H and the metal substrate is revealed to be responsible for circumventing the scaling relationship. Based on extensive density functional theory (DFT) calculations, we identify 11 BMEs which are highly active and selective toward the formation of formic acid with a much suppressed HER. The H–substrate antibonding interaction also leads to superior CO 2 RR performance on monolayer-coated penta-twinned nanowires.more » « less
- 
            During geomagnetic storms a large amount of energy is transferred into the ionosphere-thermosphere (IT) system, leading to local and global changes in e.g., the dynamics, composition, and neutral density. The more steady energy from the lower atmosphere into the IT system is in general much smaller than the energy input from the magnetosphere, especially during geomagnetic storms, and therefore details of the lower atmosphere forcing are often neglected in storm time simulations. In this study we compare the neutral density observed by Swarm-C during the moderate geomagnetic storm of 31 January to 3 February 2016 with the Thermosphere-Ionosphere-Electrodynamics-GCM (TIEGCM) finding that the model can capture the observed large scale neutral density variations better in the southern than northern hemisphere. The importance of more realistic lower atmospheric (LB) variations as specified by the Whole Atmosphere Community Climate Model eXtended (WACCM-X) with specified dynamics (SD) is demonstrated by improving especially the northern hemisphere neutral density by up to 15% compared to using climatological LB forcing. Further analysis highlights the importance of the background atmospheric condition in facilitating hemispheric different neutral density changes in response to the LB perturbations. In comparison, employing observationally based field-aligned current (FAC) versus using an empirical model to describe magnetosphere-ionosphere (MI) coupling leads to an 7–20% improved northern hemisphere neutral density. The results highlight the importance of the lower atmospheric variations and high latitude forcing in simulating the absolute large scale neutral density especially the hemispheric differences. However, focusing on the storm time variation with respect to the quiescent time, the lower atmospheric influence is reduced to 1–1.5% improvement with respect to the total observed neutral density. The results provide some guidance on the importance of more realistic upper boundary forcing and lower atmospheric variations when modeling large scale, absolute and relative neutral density variations.more » « less
- 
            Ground-based magnetometers used to measure magnetic fields on the Earth’s surface (B) have played a central role in the development of Heliophysics research for more than a century. These versatile instruments have been adapted to study everything from polar cap dynamics to the equatorial electrojet, from solar wind-magnetosphere-ionosphere coupling to real-time monitoring of space weather impacts on power grids. Due to their low costs and relatively straightforward operational procedures, these instruments have been deployed in large numbers in support of Heliophysics education and citizen science activities. They are also widely used in Heliophysics research internationally and more broadly in the geosciences, lending themselves to international and interdisciplinary collaborations; for example, ground-based electrometers collocated with magnetometers provide important information on the inductive coupling of external magnetic fields to the Earth’s interior through the induced electric field (E). The purpose of this white paper is to (1) summarize present ground-based magnetometer infrastructure, with a focus on US-based activities, (2) summarize research that is needed to improve our understanding of the causes and consequences of B variations, (3) describe the infrastructure and policies needed to support this research and improve space weather models and nowcasts/forecasts. We emphasize a strategic shift to proactively identify operational efficiencies and engage all stakeholders who need B and E to work together to intelligently design new coverage and instrumentation requirements.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
